
Supply chain analytics is the process of studying historical, transactional, and real-time data in order to uncover ways to improve supply chain efficiency and performance. As such, it is a vital function of any organization involved in the transportation of goods, addressing not only cost management but performance management.
And supply chain management has grown more complex, with frequent disruptive factors the norm, on top of major pandemic shocks that exposed flaws needing strategic resets. In this context, supply chain analytics are called upon more than ever to surface patterns and insights that drive intelligent decisions.
This article will present three key tactics for effectively implementing supply chain analytics, helping companies drive down costs and improve performance.
Modern Supply Chain Management Demands Modern Supply Chain Analytics
To define it further, supply chain analytics pulls in data from throughout the supply chain (procurement, manufacturing, inventory, orders, and distribution) for deep analysis in order to predict and improve performance. This data comes from external (carriers, partners, suppliers) as well as internal (ERP, SCM, TMS, WMS, inventory management, OMS, etc.) sources.
The ability to gain supply chain efficiency by improving data analytics can achieve a number of important business goals. This includes (but is not limited to):
- Minimizing inventory carrying costs
- Optimizing order fulfillment
- Proactively managing material costs
- Avoiding stockouts and overstocks
- Managing suppliers and purchases
Supply chain analytics also empowers businesses to engage in data-driven decision-making in the supply chain that can lower costs and improve resiliency and responsiveness. They can anticipate challenges and adapt to market fluctuations, helping them maintain a competitive edge even as challenges proliferate.
Three Tactics for Effective Implementation of Supply Chain Analytics
In order to receive the full benefit of supply chain analytics, companies need to look at it strategically and implement tactics designed to drive results in supply chain management. Here are three ways to achieve this.
Tactic 1: Integrate Data Across the Entire Supply Chain
The ability to gain a unified view of data across the supply chain is foundational in making supply chain analytics work effectively and glean actionable insights. This requires data feeds, ideally through API integrations, from all internal and external sources.
It’s often easier said than done. Data silos and fragmented systems, unfortunately, are still a thing. Enterprise systems that can’t communicate without IT intervention pose a challenge to integration.
One surefire way to achieve effective data integration is by using a true supply chain TMS that centralizes data from across multiple sources, such as those listed above (orders, shipments, inventory, etc.). A key prerequisite is compatibility with your current tech stack (ERP, WMS, TMS, etc.).
Tramm is a comprehensive TMS that is purpose-built to streamline supply chain operations within a unified platform approach. Its integration capabilities unify data from across the supply chain, creating a single source of truth. Tramm’s consolidated platform helps teams pull together actionable insights based on real-time data. This unified approach eliminates data silos, streamlines processes, and ensures consistency of actions across the supply chain.
Tactic 2: Implement Real-Time Analytics for Proactive Decision-Making
Real-time analytics is the process of analyzing and responding to data as it's generated, with the goal of providing quick insights to help users make better-informed decisions. Conversely, relying on delayed or outdated data acts as a drag on supply chain performance.
It's often used in applications where the timeliness of data is critical, such as in supply chain and logistics. Artificial intelligence and its cousin, machine learning, have added the ability to quickly read, comprehend, and correlate data from across sources, advancing real-time analytical capabilities.
Adopting a TMS with real-time data processing and monitoring capabilities ensures a seamless data flow and communication between systems and stakeholders. For example, Tramm’s FleetVision control tower module provides real-time vehicle tracking through integration with telematics, and status updates. It enables communication with all stakeholders via WhatsApp, SMS, or email for visibility into delivery status, deviations, and reporting.
Tactic 3: Utilize Advanced Analytics for Predictive and Prescriptive Insights
In the context of supply chain management, predictive analytics takes historical, transactional, and real-time data to create models that identify patterns for risks and opportunities. This helps guide decision-making by anticipating specific future events.
Prescriptive analytics takes this process a step further. It pulls together insights gleaned from predictive data analysis to suggest optimal actions, anticipating and solving potential issues before they arise.
This type of advanced capability for supply chain management involves integrating AI and machine learning to drive both predictive and prescriptive analytics. Staff must be adequately trained and processes aligned to take full advantage of these tools for real-time decision-making that drives greater supply chain efficiency.
Tramm’s advanced analytics include both predictive and prescriptive tools that optimize routing, and risk management. Tramm enables businesses to anticipate future challenges and take proactive steps in response. This type of real-time decision-making improves supply chain efficiency and resiliency.
Analytics Power Better Supply Chain Management
In reality, supply chain analytics is what drives supply chain management. The ability to pull in and quickly analyze internal and external data to formulate strategies and inform decisions is a foundational discipline. Mix in a complex global economy and disruptive events, and this capability becomes even more critical.
Tramm gets this, which is why it has developed a comprehensive suite that helps companies address multiple aspects of supply chain management. Its innovative supply chain TMS provides in-depth performance analytics backed by real-time data. Users gain planning and route optimization (Planning and Optimization Module), transporter management (Transact Module), real-time visibility (FleetVision Module) and impactful business insights (Dashboard Module), and much more. To learn more about how Tramm can transform your supply chain management, request a demo today.
Related Resources

Route Optimization: The Key to Effective Logistics Planning
Listen to any quarterly earnings call from major logistics services firms like UPS and FedEx, and you’re bound to hear a plethora of statistics that deal with delivery performance: average miles per delivery stop, stops per route, packages per driver hour, cost per package, on-time delivery rate, etc.
These figures matter a great deal because they help determine the company’s profitability (or loss) that quarter, as indicators of operating performance expressed in KPIs. They also have a great deal to do with the concept of route optimization, the art and science of executing deliveries as efficiently as possible.
Within the broader scope of logistics planning – coordinating the movement, storage, and flow of goods within a supply chain – route optimization plays a key role. Transportation managers put a great deal of effort into reducing total miles, eliminating delays, and improving route density metrics (number of stops, packages per stop, per driver, etc.). Performance goals include higher on-time rates, lower operating costs, and higher customer satisfaction, among other key business objectives.
We’ll take a closer look at route optimization, why it matters, how it’s achieved, and the technology behind it.
Aspects of Route Optimization
In logistics and transportation, whether truckloads from a plant to a distribution center or stepvans from a hub to a local run, route optimization involves finding the most efficient travel paths. Factors include the distance between points, traffic patterns, delivery windows, fuel costs, and vehicle capacity.
Determining the best fleet to use in each case is also an important success factor. Transportation managers must not only select between different vehicle types and sizes for each set of deliveries, but also the right number of each type based on fixed and variable costs. Fixed costs include driver salaries and wages, vehicle leasing or depreciation, insurance, licensing and permits, and administrative costs. Variable costs include fuel, driver overtime, maintenance and repairs, tolls, loading and unloading, and third-party fees when using a logistics provider.
In addition to vehicle type and size, other route optimization variables include product suitability and restrictions (i.e., refrigerated), road networks, customer time windows, backhaul opportunities, driver hours of service (HOS), efficient load building, and fuel/rest stop planning.
Balancing fixed and variable costs is important because it helps achieve route optimization by minimizing the total cost per delivery while maintaining efficiency and delivery schedules. By selecting the right number of vehicles, adjusting for stop density, and optimizing distances, businesses can achieve substantial savings and performance gains.
Why Route Optimization is Crucial
Through route optimization businesses can achieve greater cost efficiency, improve delivery performance, and foster sustainability. By identifying the most efficient travel routes, they can minimize fuel consumption, lower labor costs, and reduce vehicle wear and tear. This is particularly important in a competitive environment where even small cost savings can spell the difference between a division’s profit and loss.
Optimized routing helps ensure timely deliveries, improving service reliability and customer satisfaction. From an environmental perspective, it means reduced fuel usage and lower carbon emissions, supporting sustainability initiatives and regulatory compliance. This is also something that can resonate with customers who value greener transportation.
Route optimization also helps companies maximize resource utilization through increased efficiency of vehicle, driver, and asset usage. By balancing fleet capacity, stop density, and delivery schedules, transportation managers can reduce empty miles and truck idling. The result: more streamlined operations, better use of resources, and improved performance.
Logistics Challenges Affecting Route Optimization
It’s hard to believe given technological advances across logistics functions, but manual route planning is still widespread, especially among small to mid-sized businesses. Many companies continue to rely on a combination of spreadsheets, paper maps, or simple routing tools for delivery and route planning. These methods are often in use when delivery volume is manageable and the network is relatively small. But they are inefficient, lack scalability, increase costs and risk customer dissatisfaction.
As supply chains become more complex and expectations increase, the use of route optimization software is growing. Advanced tools like transportation management systems (TMS), GPS tools, and AI are becoming much more common. They all leverage real-time data, machine learning and predictive analytics to optimize routes based on factors such as traffic, weather, fuel costs, and delivery windows.
Larger enterprises – both logistics providers and shippers – rely heavily on advanced route optimization technology to manage vast delivery networks. As e-commerce growth and customer expectations rise, more companies are shifting toward automated solutions to stay competitive and improve operational efficiency.
The Role of Technology
Technology has revolutionized route optimization, enabling businesses to streamline logistics and reduce costs. Route optimization software integrates GPS, telematics, and algorithms, analyzing real-time and historical data to create the most efficient travel paths. These tools consider variables like traffic patterns, weather, delivery time windows, and vehicle capacity.
AI and machine learning enhance these capabilities with predictive analytics, looking at traffic trends, fuel costs, and customer demand to anticipate delays and proactively recommend adjustments. Machine learning models continuously refine routing strategies by analyzing historical data, improving accuracy and adaptability.
By integrating these technologies into logistics planning, companies can reduce total miles driven, minimize delays, and optimize resource use. This helps them achieve their key goals (cost savings, higher on-time delivery rates, improved customer satisfaction).
Key Features of Route Optimization Software
Route optimization software gives logistics managers an advanced tool for improving efficiency and reducing costs. A key feature is vehicle selection. When the optimal vehicle is chosen for each route based on capacity, cost, and suitability, it maximizes utilization and reduces costs. Dynamic route adjustments allow for real-time updates based on changing traffic, weather conditions, or unexpected delays, helping maintain on-time performance.
Multi-stop optimization efficiently sequences stops for deliveries, reducing total miles driven and improving route density. Beyond basic stop sequencing, route optimization software should be designed to handle the complexity, nuances and business rules of each company. This could include factoring things like load building based on relative item weight, customer delivery windows, and site restrictions, to optimize stop sequencing.
System integration ensures seamless communication with WMS, TMS, and fleet management systems (FMS), providing end-to-end visibility across functional areas. And driver behavior analytics enhance efficiency and safety by monitoring factors such as speed, braking patterns, and fuel consumption.
Best Practices for Implementation
Successfully implementing route optimization software requires a strategic approach. Start by defining clear objectives that align with your business goals. This includes identifying key metrics such as cost savings, delivery speed, or carbon emissions reduction in order to measure success effectively.
Invest in scalable technology that can grow with your business. As you expand or deal with demand spikes, the solution should be able to adapt to meet changing demands without disrupting workflows.
Provide thorough training in order to maximize the benefits of routing tools. A well-trained workforce leads to better decision-making and greater efficiency.
Prioritize continuous monitoring and adjustment. Real-time analytics can identify inefficiencies, respond to changing conditions, and fine-tune processes. Regular reviews ensure the system continues to deliver value over time and adapts to evolving challenges.
Partnering with the Right Technology Provider
Key characteristics to look for include proven expertise in logistics software and analytics, as well as an understanding of your industry's specific needs. Scalability is another important requirement, future-proofing the technology so it can grow with your business and adapt to changing needs. The ability to provide seamless integration via API or EDI with WMS, TMS, and FMS sets up real-time data sharing and better collaboration across the supply chain.
The right provider should be able to deliver a realistic implementation timeline that factors in data readiness, integration complexity, user training and any customization. For SMBs with fewer requirements, it can happen in a matter of weeks; in more complex enterprise scenarios it can take 3-6 months, often in a phased rollout.
Continuous updates ensure the technology stays on track with advances in AI, machine learning, and predictive analytics. The provider should also be able to deliver a tailored solution that addresses your unique requirements. This will help optimize performance, increase efficiency and cost savings, and improve delivery speed and accuracy, delighting customers and building loyalty.
A Tech-Driven Route To Greater Transport Efficiency
Route optimization has become a cornerstone of supply chain management, and a reliance on outdated manual processes falls woefully short of achieving its goals. Through advanced technology, businesses can become more efficient, save on costs, and improve customer satisfaction and sustainability.
Tramm, an innovator in supply chain technology, has developed a cloud-based end-to-end TMS platform that combines route planning and load building, transporter management, order management, a logistics control tower, and a mobile app. With this approach, Tramm has solved the problem of fragmented supply chain systems, integrating key functions into a unified, scalable system.
Tramm’s Planning and Optimization Module leverages powerful algorithms to handle complex routing environments, accounting for variables that accurately reflect on-the-ground transport operations. Its dynamic multi-day route planning handles scheduling for primary, secondary, and service-based fleets. Users can easily make real-time adjustments based on changing needs, including “what if” visualization and scenarios. A load builder/stackability app automatically plans loads that are tightly synced with capacity and route optimization.
To find out how Tramm’s unified approach can drive transportation efficiency and cost savings while helping you realize sustainability goals, request a demo today.

Predictive Analytics in Logistics: The Key to Effective Supply Chain Management
It’s hard to say “supply chain” without throwing in the word “complexity” as a qualifier. Supply chain management has grown more challenging for a number of reasons. Many businesses, both B2B and B2C, have become “omnichannel,” mixing online and offline, while geopolitical strains have disrupted shipping. The pandemic effect led to widespread supply chain redesign and rethinking, including diversifying sourcing, carriers, ports and lanes, etc., to guard against future shocks.
Predictive analytics has become a key capability across industries and business functions. Smart digital tools are used to analyze vast amounts of data, helping companies gain insights and plot strategies with a more forward-looking bent. In logistics and supply chain, predictive analytics has become an invaluable tool, leveraging historical and real-time data to more effectively set transportation, logistics, and warehousing strategies.
We will explore how predictive analytics is transforming supply chain management. It has become essential for everything from demand forecasting to shipping schedules and route optimization.
Supply Chain Analytics: Insights Made Actionable
Predictive analytics applies advanced algorithms and statistical models to identify patterns, trends, and correlations within the data to generate forecasts about future events or behaviors.
In the context of supply chain management, predictive analytics takes historical and transactional data to create models that identify patterns for risks and opportunities. This helps guide decision-making by anticipating specific future events.
For instance, predictive analytics can be used to help a company shift from a just-in-case to a just-in-time model for sourcing products and materials, or use analysis of next quarter’s freight rates to optimize carrier selection and contracting.
Effective Supply Chain Management Begins with Effective Analytics
The proactive approach enabled by predictive analytics helps businesses optimize key supply chain functions such as inventory management, transportation planning, and demand forecasting. It does this by making resource allocation more efficient while minimizing the impact of disruptions.
Common techniques in predictive analytics for supply chain management include regression analysis, time series forecasting, decision trees, and neural networks. Each has its unique strengths and application to specific areas, such as route planning and risk mitigation.
Ensuring compatibility between predictive analytics tools and existing IT infrastructure can be challenging. Balancing innovation with operational continuity is key to leveraging predictive insights effectively. And breaking down silos to enable seamless data flow across systems is critical but often difficult to achieve. This is why a smart option is to go with an end-to-end supply chain management platform approach, using an integrated suite of tools that comes pre-built with powerful analytics capabilities.
Three Ways Predictive Analytics Can Revolutionize Supply Chain Management
Let’s dive a little deeper into specific areas of supply chain management where predictive analytics can drive operational efficiency.
Enhancing Demand Forecasting and Inventory Management
Predictive analytics significantly enhances demand forecasting accuracy, enabling businesses to better align inventory levels with future demand. By analyzing historical sales data, market trends, and external factors, predictive models provide insights into upcoming demand patterns.
This leads to more precise inventory planning, reducing the risk of overstock and stockouts. Benefits include cost savings from reduced holding costs and waste, along with improved customer satisfaction due to consistent product availability.
Optimizing Transportation and Route Planning
Predictive analytics also plays a crucial role in optimizing transportation and route planning. By anticipating potential delays, disruptions, and inefficiencies (traffic congestion, weather conditions, etc.), predictive modeling drives more efficient route planning. This reduces transit times, lowers fuel costs, and minimizes carbon emissions, saving money while taking a more sustainable approach.
Tramm, the creator of a true supply chain TMS, has a Route Optimization Module that utilizes predictive analytics to adjust routes in real time based on a variety of factors, ensuring timely deliveries while maximizing efficiency. It also helps companies optimize cross-dock and multi-modal planning, including LTL, TL, and multi-fleet.
Proactive Risk Management and Issue Resolution
By identifying potential risks (supplier delays, transportation bottlenecks, port disruptions) before they materialize, businesses can get ahead of these risk factors. Early warning systems and scenario planning, powered by predictive analytics, help maintain supply chain resilience and continuity.
Tramm’s Control Tower Module uses the power of predictive analytics to monitor and manage potential disruptions. A dashboard view provides real-time vehicle tracking and status updates via third-party integration, GPS, or Tramm’s Mobile App. Customizable alerts notify managers about unplanned stops, deviations, and performance issues, minimizing the impact of unforeseen events.
Tapping the Power of Predictive Analytics for Supply Chain Optimization
Predictive analytics is transforming supply chain management by allowing companies to optimize demand forecasting and transportation, and proactively manage risk. These capabilities allow them to make data-driven decisions, improving efficiency and supply chain resilience. The efficiencies gained help reduce costs and improve competitiveness.
Tramm’s platform is built on a simple yet rarely implemented idea: a TMS can only be effective if every aspect of transportation management is modeled, integrated, and visible from order inception to final delivery. The power of Tramm comes from its ability to capture and leverage details in a user-friendly way. Users gain planning and route optimization, transporter management (Transact Module), real-time visibility (FleetVision Module), and impactful business insights (Dashboard Module). To learn more about how Tramm can transform your supply chain management, request a demo today.

Managing Large Order Loads to Reduce Split Shipments
In the world of B2B commerce, having an efficient order management process is a baseline capability. Especially when large order loads are involved, the ability to achieve a high percentage of orders shipped complete drives significant transportation savings, as split shipments eat away at margins.
There are several factors that drive an increased reliance on split shipments for large order loads, sometimes acting in combination to exacerbate the issue. These include how inventory is distributed in a network, the pressure on stock levels from large orders, and the operational strain it can cause. That’s why order management precision and efficiency is at such a high premium, especially when disruptions like a major port strike throw a wrench in the works.
This article examines split shipments and the issues they cause within the supply chain and distribution and explores some best practices to avoid them. The aim is to help reduce operating expenses, improve product availability, and increase customer satisfaction.
Definition and Causes of Split Shipments
A split shipment happens when an order is divided into multiple shipments due to low stock levels, logistical constraints, or both. Often, businesses feel forced to ship what’s available immediately and send the rest later, hoping that customers can get by on the partial order in the meantime.
Some common causes of split shipments on large B2B orders include the following:
- Multiple suppliers: Variations in supplier lead times or stock availability can cause parts of the order to arrive at different times.
- Order complexity: Large orders often involve diverse products with different handling, storage, or shipping requirements. For instance, temperature-sensitive or hazardous goods requiring specialized transportation often lead to separate shipments.
- Order prioritization: High-priority, in-demand products are time-sensitive, which can lead to shipping what’s on hand separately while waiting for replenishment to send the rest.
- Warehouse fulfillment: Large orders can tax the resources of warehouse operations. SKUs stored in different locations or those requiring a different picking process can cause delays, leading to split shipments.
- Backorders and lead time variation: Some items have significantly different supplier lead times, forcing businesses to ship only a portion of their available inventory and put the balance on backorder.
- Inefficient systems: Without an advanced order management system (OMS), businesses lack real-time inventory visibility across multiple locations. This leads to fragmented fulfillment decisions and more split shipments.
The High Cost of Split Shipments
While some split shipments are inevitable or unavoidable due to external factors, costs go up along with higher frequency. Transportation is clearly the highest direct cost, as it’s generally the second highest expense as a percentage after labor, and more trips are required. There’s also the added complexity of scheduling additional pickups with transporters.
Speaking of labor, split shipments also hit this cost center, as they lead to more man-hours spent preparing orders through picking and packing.
Indirect costs include damage to customer relationships and reputation and the potential loss of future business. B2B customers rely on complete orders to meet production schedules or product demand. As a result, many retailers have implemented on-time in-full (OTIF) requirements. The idea is to enforce greater supply chain optimization by tight collaboration among retailers, brands, transporters, and logistics service providers.
Failure to meet OTIF requirements results in fines and penalties. A McKinsey study found that many retailers in North America are tightening OTIF requirements by narrowing delivery windows and increasing fines while revising the definition of in-full delivery.
A higher incidence of split shipments can reflect deeper issues of poor inventory management, such as stock imbalances or inefficient replenishment processes. Finally, they contribute to higher carbon emissions from the additional truck trips required.
Other Split Shipment Headaches in B2B
Split shipments introduce complexities that impact multiple areas of operations, including order tracking, invoicing, and customer communication. Each contributes to inefficiencies, often leading to higher costs, increased labor, and a decline in service quality.
Tracking Complexity
When shipments are split, tracking the order status becomes more complicated because different segments move independently through the supply chain. Logistics teams have to track each portion of the order separately, from inbound inventory to fulfillment and delivery. This involves monitoring multiple tracking numbers, the status of transporters, and estimated delivery times.
Managing Multiple Invoices
Split shipments often lead to multiple invoices, complicating accounts payable for both the shipper and customer, including reconciliation of multiple invoices against the original order. Each invoice might include different shipping costs, taxes, and fees, adding to administrative overhead. In some cases, customers might withhold payment until the entire order is delivered, adding more complexity and delaying closing the transaction.
Customer Communications
In B2B transactions, logistics and delivery impact a customer’s production schedules, inventory levels, and downstream operations. Shippers need to manage expectations around timing, coordination, and delivery schedules. Customers often rely on complete shipments to avoid production downtime, which causes frustration and the pain of adjusting internal processes.
Split shipments also require customers to coordinate with receiving teams across multiple deliveries. Additional labor and resources are needed to accept, inspect, and verify each portion of the order upon arrival.
Leveraging Technology to Optimize B2B Order Management
Advances in technology for supply chain and logistics have made it easier for businesses to optimize their inventory and order management processes in order to reduce the incidence of split shipments. Here are some examples.
WMS
A warehouse management system (WMS) provides real-time updates on inventory levels, enabling better decision-making and reducing stock-outs that lead to split shipments. Most systems can also automate inventory replenishment to ensure that items in high demand remain in stock, reducing the need for split shipments.
OMS
An order management system (OMS) integrates order data from various sources (e-commerce platform, ERP, CRM, WMS, etc.), providing visibility into inventory availability. This helps drive a higher percentage of “order complete” confirmations before shipment. An OMS also has consolidation logic for prioritizing full order fulfillment vs. partial shipments.
Tramm, a developer of a leading unified supply chain management platform, combines a powerful OMS within its transportation management system (TMS) suite. This integrated approach provides end-to-end visibility and control over order fulfillment and shipping processes. Tramm’s Order Management Module ensures that orders are fully consolidated before being released for shipment, while the TMS manages transportation in the most efficient, cost-effective manner.
Using real-time data synchronization, Tramm’s integrated approach ensures that any changes in order status, inventory levels, or shipping schedules are immediately reflected across both systems. This allows the OMS to quickly adjust fulfillment strategies if stock availability or transporter issues arise, reducing the need to rely on split shipments.
Predictive Analytics and Demand Forecasting
Predictive analytics tools tap the power of AI to enable proactive inventory management. By more accurately forecasting demand and optimizing inventory levels, both stockouts and split shipments are reduced. This technology enables users to foresee potential supply chain disruptions and adjust fulfillment strategies accordingly.
Automated Fulfillment and Transporter Routing
Fulfillment automation reduces errors in picking/packing, allowing a higher percentage of full orders to be processed and minimizing the need for split shipments.
Smart routing automatically directs orders to the most appropriate warehouse or fulfillment center, optimizing shipments and reducing transportation costs. Tramm’s Planning & Optimization Module uses advanced algorithms and visualization tools to drive better, faster load and routing decisions. The result is operational cost savings, including reduced split shipments and highly responsive planning capabilities.
Supplier Collaboration and Data Sharing
Collaborative planning includes sharing inventory and demand data with suppliers, improving stock replenishment, and reducing the likelihood of split shipments. By employing Vendor-Managed Inventory (VMI), suppliers manage stock levels, helping ensure that products are consistently available. This minimizes the need for split shipments due to out-of-stocks.
Best Practices to Minimize Split Shipments in B2B Order Management
Companies can take several steps to improve their order management processes, increase efficiency, and increase the percentage of “shipped complete” orders.
Centralized Inventory Management
Centralized inventory involves keeping all stock in one primary location, such as a warehouse, fulfillment center, or other storage facility. This central hub typically manages not only inventory but also key logistics functions like order processing and fulfillment.
In a centralized inventory system, the majority of operations, including order management and distribution, are handled from this single location, even when there are multiple sales channels or retail outlets. This strategy reduces the need for split shipments due to inventory imbalances.
Order Consolidation Policies
Order consolidation involves combining multiple orders into a single shipment. This can be done by centralizing items from multiple orders into a single location or by combining multiple orders from different sales channels into a single system.
Order consolidation can benefit businesses in several ways. This includes lower transportation costs based on economies of scale, better management of stock levels due to fewer shipments, overall simplified logistics, and a better customer experience through more complete orders.
Smart Reordering Strategies
Smart reordering is a rules-based, automated process utilizing data analytics and AI to manage inventory levels and optimize replenishment. Unlike traditional reordering, which relies on manual tracking or fixed schedules, smart reordering uses real-time data (sales trends, demand forecasting, lead times, supplier performance, etc.) to predict when SKUs will need to be replenished.
This approach helps ensure that critical and/or high-demand products are always in stock, preventing backorders and reducing the need for split shipments.
Transparent Customer Communication
This seems like an obvious point, but too many organizations fail to keep customers updated on order status. This is especially important when unexpected drops in inventory levels or logistics snafus require a split shipment.
Always give customers the option of waiting for replenishment to send a complete order or receiving a partial shipment first. In some cases, the added expense of expedited transportation comes into play to make things right and keep to their schedule.
Continuous Monitoring and Adjustment
Regularly analyzing order data helps identify patterns that lead to increases in split shipments. By tracking trends in demand, stock levels, and fulfillment performance, you can proactively adjust inventory management, including redistributing stock across locations or improving order consolidation processes.
Leaning On Technology to Optimize Large Order Loads
Minimizing split shipments is important to maintain supply chain efficiency and reduce transportation costs. Software such as OMS, WMS, and predictive analytics tools can improve inventory management and streamline fulfillment processes. Best practices such as smart reordering, order consolidation, and continuous monitoring help reduce the incidence of split shipments.
Tramm integrates transporter management, route optimization, order management, customizable dashboards, and a control tower to optimize routing and order allocation. When shipments do need to be split, Tramm automates the process based on operational and resource requirements.
Tramm’s FleetVision Module gives users access to precise real-time data and insights. With a better understanding of fleet operations on a granular level, they can manage each load more effectively and implement performance improvement measures. The result is greater efficiency, reduced costs, and improved customer satisfaction.
To learn more about how Tramm can drive measurable improvement in your supply chain and logistics operations, request a demo today.

Smarter Shipping: Leveraging a Supply Chain TMS for Enhanced Business Intelligence
As we’re not yet living in the age of “Star Trek,” where people and things can be transported by breaking down and then reassembling molecules thousands of miles away (Elon Musk: take note), we here on Earth still count on shipping and logistics. By land, sea, and air, massive amounts of cargo are moved every day to keep global commerce humming. And a modern supply chain TMS (transportation management system) is a key technology that helps make it happen more efficiently.
Intelligent shipping combines business intelligence, planning, and execution tools, along with strategy and process, to optimize routing, scheduling, loading, communication, transporter management, etc. There are many primary and secondary benefits, including faster, more accurate deliveries, cost savings, improved customer satisfaction, better driver engagement and retention, and improved inventory management and demand forecasting.
A true supply chain TMS can help you achieve your goal of intelligent shipping by enhancing business intelligence and optimizing all aspects of logistics and transportation.
The Role of Supply Chain Analytics in Global Transport Operations
Supply chain analytics help organizations both keep track of and improve operational performance across various interdependent functions. All of that activity is throwing off tons of data, requiring sophisticated systems to synthesize and analyze, produce insights, and make recommendations. Increasingly, this is done by automating what had been manual processes, such as demand forecasting and route optimization.
The capabilities of supply chain data analytics have advanced significantly in recent years, increasing operational efficiency across all phases of transportation and logistics. For example, modern systems can assess risks associated with everything from geopolitical disruptions and natural disasters to freight capacity and supplier performance. Companies can then develop contingency plans and make better-informed decisions to mitigate these risks.
An advanced supply chain TMS can track KPIs such as the percentage of on-time deliveries, delivery error rate, cost per mile and cost per unit, load utilization percentage, average delivery time, and order cycle time. All of these metrics act as a barometer of business performance and efficiency.
Building Business Intelligence: Supply Chain Analytics Via a Powerful Supply Chain TMS
Tramm, an innovator in supply chain technology, has developed a platform based on the idea that a TMS can only be effective if every aspect of transport management is modeled, integrated, and visible from order inception to final delivery. The end-to-end Tramm TMS platform features route planning and optimization, transporter management, a supply chain control tower, and a powerful mobile app. Comprehensive reporting tools enable strategic planning, and performance analysis and performance management are enhanced via live tempo dashboards, trip scores, and more.
Tramm’s Dashboard Module provides powerful insights built from real-time, integrated external and internal data. Its control tower and visualization module, FleetVision, empowers managers to go from reactive (due to gaps between reported vs. actual performance) to proactive (based on live transportation data). With a better understanding of fleet operations on a granular level, loads are handled more efficiently, freeing up managers to implement performance improvement strategies.
A configurable Order Management module automates order processing, providing detailed visibility into order attributes. Integrated into Tramm TMS for seamless planning and execution, it automatically splits orders based on operational and resource requirements. A client portal allows end customers to capture, manage, and review order status.
Tramm centralizes all supply chain data, improving consistency and accuracy, eliminating discrepancies, and providing a single source of truth. Real-time updates and automated workflows further enhance data reliability, improving decision-making and overall supply chain efficiency.
Three Tactics to Build Business Intelligence through Supply Chain Analytics
To fully leverage the capabilities of a supply chain TMS and enhance business intelligence, companies need to implement specific tactics. Here are three tactics designed to help you achieve these goals, and how Tramm empowers you to do so.
Integrated Supply Chain Analytics
Supply chain analytics need to be woven into every aspect of transportation management. Tramm TMS centralizes data from multiple sources (orders, routes, transporters, etc.), ensuring that critical information is captured and processed in a unified manner.
Tramm eliminates data discrepancies and inconsistencies, creating a reliable, accurate foundation for all decision-making processes. It also provides a comprehensive view of the supply chain, enabling managers to make informed decisions quickly. In addition, internal and external teams have access to the same information, enhancing coordination and cooperation.
Real-Time Data and Insights
Tramm’s TMS and its real-time data processing capabilities allow transport managers to monitor and analyze activities as they happen. Continuous data updates provide a live view from order inception to final delivery, for improved route optimization, tracking, and inventory management.
This capability also allows for proactive identification of bottlenecks and inefficiencies, so managers can quickly implement corrective action and minimize disruptions.
Advanced Reporting and Visualization
Tramm’s supply chain TMS has powerful reporting and visualization tools that turn complex data into actionable insights, helping managers understand and act on key insights effectively.
The platform’s automated reporting on KPIs, such as delivery time, costs, and load utilization, surfaces performance trends and areas for improvement. Tramm’s Dashboard Module translates complex datasets into intuitive graphs, charts, and dashboards to aid decision-making.
Today’s Complex Logistics Call for a Supply Chain TMS That Does More Than Route Shipments
With global freight capacity tightening once again, a volatile market environment, and disruptions the norm, the limited functionality of a legacy TMS isn’t up to the task of managing complex functions across the supply chain.
Tramm TMS leverages the power of advanced analytics, real-time visibility, comprehensive reporting, business intelligence, and performance management tools. With it, organizations can get a better handle on transporter management, improving order flow, optimizing routing, and improving customer satisfaction. To learn how Tramm can transform your supply chain operations, request a demo today.
